Interpolatory Hermite Spline Wavelets

T. N. T. Goodman
Department of Mathematics and Computer Science, The University, Dundee DDI 4 HN , Scotland Communicated by Charles A. Micchelli

Received July 22, 1992; accepted in revised form April 28, 1993

Abstract

Wavelets are constructed comprising spline functions with multiple knots. These wavelets have certain derivatives vanishing at the integers, in an analogous manner to the B-splines of Schoenberg and Sharma related to cardinal Hermite interpolation. 1994 Academic Press, Inc.

1. Introduction

We do not attempt to give here a review of the development of the theory of wavelets, but refer to [2, 4, 11, 12]. Although the theory extends to more than one dimension, we restrict our attention here to the univariate case.

Let ψ be a function in $L^{2}(\mathbf{R})$ and consider its translated dilates $B:=\left\{2^{k / 2} \psi\left(2^{k}-j\right): j, k \in Z\right\}$. We call ψ an orthogonal wavelet if B forms an orthonormal basis for $L^{2}(\mathbf{R})$. We call ψ a wavelet (sometimes called prewavelet) if B forms a Riesz basis for $L^{2}(\mathbf{R})$ and $\psi\left(2^{k} .-j\right)$ is orthogonal to $\psi\left(2^{i} .-i\right)$ whenever $k \neq l$. (A set $\left\{\phi_{j}: j \in Z\right\}$ in $L^{2}(\mathbf{R})$ is a Riesz basis for $L^{2}(\mathbf{R})$ if every function f in $L^{2}(\mathbf{R})$ can be expressed uniquely in the form $\sum_{-\infty}^{\infty} c_{j} \phi_{j}$ and the norm $\|f\|:=\|c\|_{2}$ is equivalent to the norm $\|f\|_{2}$). The weaker notion of wavelet was considered more recently than that of orthogonal wavelet, see $[1,8]$, and is particularly useful in allowing the construction of compactly supported spline wavelets [3].
In [6, 7], this concept is weakened further, as follows. We say functions $\psi_{0}, \ldots, \psi_{r-1}$ are wavelets of multiplicity r if $B:=\left\{2^{k / 2} \psi_{s}\left(2^{k} .-j\right): j, k \in Z\right.$, $s=0, \ldots, r-1\}$ forms a Riesz basis for $L^{2}(\mathbf{R})$ and $\psi_{s}\left(2^{k} .-j\right)$ is orthogonal to $\psi_{l}\left(2^{k} .-i\right)$ whenever $k \neq l$. In [7], this idea is used to construct compactly supported spline wavelets $\psi_{0}, \ldots, \psi_{r-1}$ with knots of multiplicity r, which are analogous to consecutive B-splines with knots of multiplicity r.
In this paper we give a different construction of spline wavelets $\psi_{0}, \ldots, \psi_{r-1}$ with knots of multiplicity r, which are analogous to the
B-splines introduced by Schoenberg and Sharma [14], which are related to the problem of cardinal Hermite spline interpolation. Here each wavelet $\psi_{s}, 0 \leqslant s \leqslant r-1$, satisfies the interpolation conditions

$$
\psi_{s}^{(j)}(k)=0, \quad 0 \leqslant j \leqslant r-1, j \neq s, k \in Z .
$$

Thus data values on the derivatives of order s at the integers are picked up only by integer translates of the wavelet ψ_{s}, and not by integer translates of the wavelets $\psi_{j}, j \neq s$.

The construction of the wavelets $\psi_{0}, \ldots, \psi_{r-1}$ is given in Section 2 and their properties are studied in Section 3. The work here depends heavily on the work of Lee [9] in showing that the B-splines are locally linearly independent, and on the theory of cardinal Birkhoff interpolation in [5]. Finally, in Section 4, we examine the special case of cubic splines with double knots, and in this case relate the wavelets of this paper with those of [7].

2. Construction of Wavelets

We denote by $\zeta_{n, r}(S)$ the space of spline functions of degree n on \mathbf{R} with knots of multiplicity r on the set S. For $i=0, \ldots, r-1$, we let N_{i} denote the B-spline in $\zeta_{2 r-1, r}(Z)$ with support on $[0,2]$ and knots at 0,1 , and 2 of multiplicity $r-i, r$, and $i+1$, respectively, (with suitable normalisation). Then any function f in $\zeta_{2 r-1, r}(Z)$ can be written uniquely in the form

$$
f=\sum_{i=-\infty}^{\infty} \sum_{j=0}^{r-1} a_{i j} N_{j}(.-i)
$$

for numbers ($a_{i j}$).
Instead of this usual basis of B-splines for $\zeta_{2 r-1, r}(Z)$, we shall consider an alternative basis introduced by Schoenberg and Sharma [14] and shown to be a basis by Lee in [9]. For $s=0, \ldots, r-1$, we let B_{s} denote the unique element of $\zeta_{2 r-1, r}(Z)$ with support on $[0,2]$ and satisfying

$$
\begin{equation*}
B_{s}^{(j)}(1)=\delta_{s j}, \quad j=0, \ldots, r-1 \tag{2.1}
\end{equation*}
$$

Now B_{0}, \ldots, B_{r-1} form a basis for $\zeta_{2 r-1, r}(Z) \mid[0,2]$ and hence N_{0}, \ldots, N_{r-1} can be written as linear combinations of B_{0}, \ldots, B_{r-1}. It follows that any function f in $\zeta_{2 r-1, r}(Z)$ with support in $[k, k+N]$ for k in Z and $N \geqslant 2$ can be written in the form

$$
\begin{equation*}
f=\sum_{i=k}^{k+N-2} \sum_{j=0}^{r-1} a_{i j} B_{j}(.-i), \tag{2.2}
\end{equation*}
$$

where by (2.1),

$$
a_{i j}=f^{(j)}(i+1)
$$

In particular, we see that since $\zeta_{2 r-1, r}(Z) \subset \zeta_{2 r-1, r}\left(\frac{1}{2} Z\right)$, we have

$$
\begin{equation*}
B_{s}(x)=\sum_{i=0}^{2} \sum_{j=0}^{r-1} c_{i j} B_{j}(2 x-i), \quad s=0, \ldots, r-1 \tag{2.3}
\end{equation*}
$$

where

$$
c_{i j}=2^{-j} B_{s}^{(j)}\left(\frac{i+1}{2}\right)
$$

We remark that the basis $\left(B_{j}\right)$ is defined for degree $2 m-1$ for any $m \geqslant r$, but it is only for degree $n=2 r-1$ that we are able to express any function in $\zeta_{n, r}(Z)$ of compact support as a finite linear combination as in (2.2).

Now let $V_{0}=\zeta_{2 r-1, r}(Z) \cap L^{2}(\mathbf{R}), V_{1}=\zeta_{2 r-1, r}\left(\frac{1}{2} Z\right) \cap L^{2}(\mathbf{R})$ and let W be the orthogonal complement of V_{0} in V_{1}. It is known [7] that $\left\{N_{j}(.-i)\right.$: $i \in Z, j=0, \ldots, r-1\}$ forms a Riesz basis for V_{0}. Since N_{0}, \ldots, N_{r-1} and $B_{0}, \ldots, B_{r_{-1}}$ are equivalent bases, it follows that $\left\{B_{j}(.-i): i \in Z\right.$, $j=0, \ldots, r-1\}$ is also a Riesz basis for V_{0}. The two-scale relation (2.3) suggests that we look for wavelets ψ_{s} corresponding to the B-splines B_{s}, as we now describe.

For $s=0, \ldots, r-1$ define

$$
T_{s}=\left\{f \in V_{1}: f^{(j)} \mid Z=0,0 \leqslant j \leqslant r-1, j \neq s\right\} .
$$

For even r and $s=0, \ldots, r-1$, we shall construct a function ψ_{s} in $W \cap T_{s}$ with support on $[0, r+2]$ so that $\left\{\psi_{s}(.-i): i \in Z, s=0, \ldots, r-1\right\}$ forms a Riesz basis for W. It then follows from the work of [6] that $\psi_{0}, \ldots, \psi_{r-1}$ are wavelets of multiplicity r, as defined in Section 1. To do this we consider, for $s=0, \ldots, r-1$, the space

$$
U_{s}=\left\{f \in \zeta_{4 r-1 . r}\left(\frac{1}{2} Z\right): f^{(j)} \mid Z=0,0 \leqslant j \leqslant r-1,2 r \leqslant j \leqslant 3 r-1, j \neq 2 r+s\right\} .
$$

We also define

$$
U=\left\{f \in \zeta_{4 r-1, r}\left(\frac{1}{2} Z\right): f^{(j)} \mid Z=0, j=0, \ldots, r-1\right\}
$$

By integrating by parts it is easy to see that we have
Lemma 2.1. If f in $W \cap T_{s}$ has support in $[a, b], a<b$, then there is a unique function g in U_{s} with support in $[a, b]$ and $g^{(2 r)}=f$. Conversely if g in U_{s} has support in $[a, b]$, then $g^{(2 r)}$ is in $W \cap T_{s}$.

We shall construct functions Ψ_{s} in $U_{s}, s=0, \ldots, r-1$, and then define $\psi_{s}=\Psi_{s}^{(2 r)}$.

Consider the function

$$
\begin{equation*}
S(x)=\sum_{r}^{2 r-1} a_{j} x^{j}+\sum_{3 r}^{4 r-1} a_{j} x^{j}+\sum_{3 r}^{4 r-1} b_{j}\left(x-\frac{1}{2}\right)^{j}, \quad 0 \leqslant x \leqslant 1, \tag{2.4}
\end{equation*}
$$

and for λ in \mathbf{R} consider the equations

$$
\begin{cases}S^{(j)}(1)=0, j=0, \ldots, r-1, & j=2 r, \ldots, 3 r-1, \tag{2.5}\\ S^{(j)}(1)-\lambda S^{(j)}(0)=0, & j=r, \ldots, 2 r-1 .\end{cases}
$$

This gives a homogeneous system of $3 r$ equations in the unknowns $a_{r}, \ldots, a_{2 r-1}, a_{3 r}, \ldots, a_{4 r-1}, b_{3 r}, \ldots, b_{4 r-1}$. We denote the determinant of this system by $\pi(\lambda)$.

Now take $s, 0 \leqslant s \leqslant r-1$. For S as in (2.4), consider the function

$$
\begin{equation*}
T(x)=S(x)+c \frac{x^{2 r+s}}{(2 r+s)!}, \quad 0 \leqslant x \leqslant 1 . \tag{2.6}
\end{equation*}
$$

For λ in \mathbf{R} and $0 \leqslant t \leqslant 1$, we consider the equations

$$
\begin{gather*}
T^{(j)}(1)=0, \quad j=0, \ldots, r-1,2 r, \ldots, 2 r+s-1, \tag{2.7}\\
T^{(2 r+s)}(1)-\lambda T^{(2 r+s)}(0)=0, \tag{2.8}\\
T^{(j)}(1)=0, \quad j=2 r+s+1, \ldots, 3 r-1, \tag{2.9}\\
T^{(j)}(1)-\lambda T^{(j)}(0)=0, \quad j=r, \ldots, 2 r-1, \tag{2.10}\\
T(t)=0 . \tag{2.11}
\end{gather*}
$$

This gives a homogeneous system of $3 r+1$ equations in the $3 r$ previous unknowns together with the unknown c. We denote its determinant by $\pi_{s}(\lambda, t)=\pi_{s}(t)$. Since $T^{(2 r+s)}(0)=c$, we have

$$
\begin{equation*}
\pi_{s}^{(2 r+s)}(0)=\pi(\lambda) \tag{2.12}
\end{equation*}
$$

For example, when $r=1$,

$$
\pi_{0}(\lambda, t)=\left|\begin{array}{cccc}
1 & 1 & \frac{1}{8} & \frac{1}{2} \\
0 & 6 & 3 & 1-\lambda \\
1-\lambda & 3 & \frac{3}{4} & 1 \\
t & t^{3} & \left(t-\frac{1}{2}\right)^{3} & \frac{1}{2} t^{2}
\end{array}\right| .
$$

Considering (2.11), (2.7), and (2.9) gives, for general r,

$$
\begin{equation*}
\pi_{s}^{(j)}(0)=\pi_{s}^{(j)}(1)=0, \quad 0 \leqslant j \leqslant r-1,2 r \leqslant j \leqslant 3 r-1, j \neq 2 r+s, \tag{2.13}
\end{equation*}
$$

while (2.11), (2.8), and (2.10) give

$$
\begin{equation*}
\pi_{s}^{(j)}(1)=\lambda \pi_{s}^{(j)}(0), \quad j=r, \ldots, 2 r-1 \text { and } 2 r+s \tag{2.14}
\end{equation*}
$$

From (2.13) and (2.14) we see that $\pi_{s}(t)$ can be extended to an element π_{s} of U_{s} satisfying

$$
\begin{equation*}
\pi_{s}(t+1)=\lambda \pi_{s}(t), \quad t \in \mathbf{R} \tag{2.15}
\end{equation*}
$$

We now write

$$
\begin{equation*}
\pi_{s}(\lambda, t)=\sum_{k=0}^{r+1} \Phi_{s, k}(t) \lambda^{r+1-k}, \quad 0 \leqslant t \leqslant 1 \tag{2.16}
\end{equation*}
$$

and define

$$
\begin{align*}
\Psi_{s}(t) & :=\Phi_{s, k}(t-k), \quad k \leqslant t<k+1, k=0, \ldots, r+1, \tag{2.17}\\
& :=0, \quad \text { otherwise } .
\end{align*}
$$

Equating coefficients of powers of λ in (2.13) and (2.14) gives

$$
\begin{gather*}
\Phi_{s, k}^{(j)}(0)=\Phi_{s, k}^{(j)}(1)=0, \\
k=0, \ldots, r+1,0 \leqslant j \leqslant r-1,2 r \leqslant j \leqslant 3 r-1, j \neq 2 r+s, \tag{2.18}\\
\Phi_{s, k}^{(j)}(1)=\Phi_{s, k+1}^{(j)}(0), \quad k=0, \ldots, r, j=r, \ldots, 2 r-1 \text { and } 2 r+s, \tag{2.19}\\
\Phi_{s, 0}^{(j)}(0)=\Phi_{s, r+1}^{(j)}(1)=0, \quad j=r, \ldots, 2 r-1 \text { and } 2 r+s . \tag{2.20}
\end{gather*}
$$

From (2.17)-(2.20) we see that Ψ_{s} lies in U_{s}. Clearly from (2.17), Ψ_{s} has support in $[0, r+2]$. So by Lemma 2.1, the function $\psi_{s}=\Psi_{s}^{(2 r)}$ is in $W \cap T_{s}$ and has support in $[0, r+2]$.

To finish this section we note that by (2.15)-(2.17),

$$
\begin{align*}
\pi_{s}(t) & =\sum_{k=-\infty}^{\infty} \Psi_{s}(t+k) \lambda^{r+1-k}, \quad t \in \mathbf{R} \\
& =\sum_{k=-\infty}^{\infty} \Psi_{s}(t-k) \lambda^{r+1+k}, \quad t \in \mathbf{R} \tag{2.21}
\end{align*}
$$

while by (2.12),

$$
\begin{align*}
\pi(\lambda) & =\sum_{k=1}^{r+1} \Psi_{s}^{(2 r+s)}(k) \lambda^{r+1-k} \\
& =\sum_{k=0}^{r} \Psi_{s}^{(2 r+s)}(r+1-k) \lambda^{k} \tag{2.22}
\end{align*}
$$

3. Properties of Wavelets

We now study properties of the functions $\psi_{0}, \ldots, \psi_{r-1}$, in particular showing that $\left\{\psi_{s}(-i): i \in Z, s=0, \ldots, r-1\right\}$ forms a Riesz basis for W and hence $\psi_{0}, \ldots, \psi_{r-1}$ are wavelets of multiplicity r. As in the previous section, we shall first consider the functions $\Psi_{0}, \ldots, \Psi_{r-1}$ which, by (2.17), is equivalent to studying the functions $\left\{\Phi_{s, k}\right\}$ given by (2.16). Henceforward we assume that r is even.

Lemma 3.1. For $0 \leqslant s \leqslant r-1$ and any real number λ, the function $\pi_{s}=\pi_{s}(\lambda,$.$) does not vanish identically on \mathbf{R}$.

Proof. We shall apply the theory of [5]. Since $\pi(\lambda)$ is the determinant of the system (2.5), the roots of $\pi(\lambda)=0$ are the eigenvalues for the following cardinal Birkhoff interpolation problem.

$$
\left.\begin{array}{l}
\text { Find a function } f \text { in } \zeta_{4 r-1, r}\left(\frac{1}{2} Z\right) \text { with prescribed values for } \tag{3.1}\\
f^{(j)}(k), k \in Z, j \in I,
\end{array}\right\}
$$

where $I=\{0, \ldots, r-1,2 r, \ldots, 3 r-1\}$. We shall apply a special case of Theorem 4.6 of [5], which we now state. For a problem of form (3.1), let $J=\{r \leqslant j \leqslant 4 r-1: 4 r-1-j \notin I\}$. Suppose that $J=\left\{j_{1}, \ldots, j_{r}\right\}$, where $j_{1}<\cdots<j_{r}$, and for some ρ, η,

$$
j_{k}+k+r+\eta \quad \text { is } \begin{cases}\text { odd } & \text { if } 1 \leqslant k \leqslant \rho \\ \text { even } & \text { if } \rho+1 \leqslant k \leqslant r\end{cases}
$$

Then (3.1) has ρ distinct eigenvalues of sign (-1$)^{\eta}$ and $r-\rho$ distinct eigenvalues of sign $(-1)^{\eta+1}$.

For the case above we have $J=\{2 r, \ldots, 3 r-1\}$ and, since r is even, there are r distinct, strictly positive eigenvalues. Moreover, by symmetry, the eigenvalues are invariant under $t \rightarrow t^{-1}$ and so they are not equal to 1 .

Now the values of λ for which $\pi_{s}^{(r)}(0)=\pi_{s}^{(r)}(\lambda, 0)=0$ are the eigenvalues for the cardinal Birkhoff interpolation problem (3.1) with $I=\{0, \ldots, r$, $2 r, \ldots, 3 r-1\} \backslash\{2 r+s\}$.

In this case $J=\{2 r-1-s, 2 r, \ldots, 3 r-2\}$ and as above we see that if s is even, then the r eigenvalues are distinct, strictly negative and not equal to -1 , while if s is odd, the eigenvalues comprise 1 and $r-1$ distinct strictly negative eigenvalues, including -1 .

So if $\lambda \leqslant 0$ or $\lambda=1$, then from (2.12),

$$
\pi_{s}^{(2 r+s)}(0)=\pi(\lambda) \neq 0,
$$

while if $\lambda>0, \lambda \neq 1$, then $\pi_{s}^{(r)}(0) \neq 0$. So for all real λ, π_{s} does not vanish identically.

A similar argument shows that Lemma 3.1 is true for r odd and s even. Unfortunately, however, it does not hold when both r and s are odd, for in this case $\pi_{s}(-1,$.$) vanishes identically. For r$ and s odd, arguing as in the proof of Lemma 3.1 shows that for $\lambda=-1, \pi_{s}^{(2 r+s)}(0)=\pi_{s}^{(r)}(0)=0$ and considering a finite Birkhoff interpolation problem on any large enough interval shows that π_{s} must vanish on this interval.

Lemma 3.2. For $0 \leqslant s \leqslant r-1$, the functions $\Phi_{s, i}, i=0, \ldots, r+1$, are linearly independent on $\left[0, \frac{1}{2}\right]$ and on $\left[\frac{1}{2}, 1\right]$.

Proof. This follows closely the proof of Lemma 1 in [9]. Suppose that

$$
\sum_{i=0}^{r+1} a_{i} \Phi_{s, i}(x)=0, \quad \frac{1}{2} \leqslant x \leqslant 1
$$

for some constants $\left(a_{i}\right)$. By (2.20) we have

$$
\sum_{i=0}^{r} a_{i} \Phi_{s, i}^{(j)}(1)=0, \quad j=r, \ldots, 2 r-1 \text { and } 2 r+s
$$

This gives $r+1$ equations in $r+1$ unknowns. Let Δ denote the determinant of this system:

$$
\Delta:=\operatorname{det}\left[\Phi_{s, i}^{(j)}(1)\right] .
$$

We shall show that $\Delta \neq 0$. It follows that $a_{0}=\cdots=a_{r}=0$. Since $\Phi_{s, r+1}(t)=\pi_{s}(0, t)$, this does not vanish identically, by Lemma 3.1, and so we also have $a_{r+1}=0$. This shows that $\Phi_{s, 0}, \ldots, \Phi_{s, r+1}$ are linearly independent on $\left[\frac{1}{2}, 1\right]$ and the result for [$0, \frac{1}{2}$] follows similarly.

Now let $\lambda_{1}, \ldots, \lambda_{\text {r }}$ be the roots of $\pi(\lambda)=0$, which we showed in the proof of Lemma 3.1 are distinct and strictly positive. Letting λ_{0} be any non-zero value distinct from $\lambda_{1}, \ldots, \lambda_{r}$, put

$$
V:=\operatorname{det}\left[\lambda_{j}^{r+1-i}\right]_{i, j=0}^{r}
$$

Then

$$
\begin{aligned}
\Delta V & =\operatorname{det}\left[\sum_{k=0}^{r} \Phi_{s, k}^{(j)}(1) \lambda_{i}^{r+1-k}\right] \\
& =\operatorname{det}\left[\pi_{s}^{(j)}\left(\lambda_{i}, 1\right)\right]
\end{aligned}
$$

by (2.16) and (2.20). By (2.15) and (2.12),

$$
\pi_{s}^{(2 r+s)}\left(\lambda_{i}, 1\right)=\lambda_{i} \pi_{s}^{(2 r+s)}\left(\lambda_{i}, 0\right)=\lambda_{i} \pi\left(\lambda_{i}\right) .
$$

Since $\pi\left(\lambda_{i}\right)=0, i=1, \ldots, r$, we have

$$
\Delta V=(-1)^{r} \lambda_{0} \pi\left(\lambda_{0}\right) \operatorname{det}\left[\pi_{s}^{(j)}\left(\lambda_{i}, 1\right)\right]_{i=1}^{r} \underset{\substack{2 r-1 \\ j=r}}{2 r}
$$

Since $\lambda_{0} \pi\left(\lambda_{0}\right) \neq 0$, we only need to show that

$$
\begin{equation*}
\operatorname{det}\left[S_{i}^{(j)}(1)\right]_{i=1}^{r}{\underset{j}{2}=r}_{2 r-1}^{j=0,} \tag{3.2}
\end{equation*}
$$

where we have written

$$
S_{i}(t)=\pi_{s}\left(\lambda_{i}, t\right), \quad t \in \mathbf{R}
$$

For $i=1, \ldots, r, S_{i}$ does not vanish identically, by Lemma 3.1, and by (2.15),

$$
S_{i}(t+1)=\lambda_{i} S_{i}(t), \quad t \in \mathbf{R}
$$

Moreover by (2.12) and (2.13),

$$
S_{i}^{(j)}(k)=0, \quad k \in Z, j=0, \ldots, r-1,2 r, \ldots, 3 r-1
$$

In the terminology of $[13,5], S_{1}, \ldots, S_{r}$ are eigensplines for the problem (3.1). Now suppose that

$$
\sum_{i=1}^{r} c_{i} S_{i}^{(j)}(1)=0, \quad j=r, \ldots, 2 r-1
$$

and let

$$
\begin{aligned}
S(x) & =0, \quad x \leqslant 1, \\
& =\sum_{i=1}^{r} c_{i} S_{i}(x), \quad x \geqslant 1 .
\end{aligned}
$$

Then S lies in $\zeta_{4 r-1, r}\left(\frac{1}{2} Z\right)$ and

$$
S^{(j)}(k)=0, \quad k \in Z, i=0, \ldots, r-1,2 r, \ldots, 3 r-1
$$

So from the theory of [5], S is a linear combination of the eigensplines. Since the eigensplines are linearly independent on ($-\infty, 0$), we must have $S \equiv 0$ and hence $\sum_{i=1}^{r} c_{i} S_{i} \equiv 0$ on $(1, \infty)$. Since the eigensplines are linearly independent on ($1, \infty$) we must have $c_{i}=0, i=1, \ldots, r$. Thus (3.2) is established and the proof is complete.

Lemma 3.2 tells us, in particular, that none of the functions $\Phi_{s, 0}, \ldots, \Phi_{s, r+1}$ can vanish identically on $\left[0, \frac{1}{2}\right]$ or on $\left[\frac{1}{2}, 1\right]$ and so definition (2.17) immediately gives

Corollary 3.1. For $0 \leqslant s \leqslant r-1$, the function Ψ_{s} does not vanish identically on any nontrivial interval in $[0, r+2]$.

Lemma 3.3. For $0 \leqslant s \leqslant r-1$, any function f in U_{s} can be written uniquely in the form

$$
\begin{equation*}
f=\sum_{i=-\infty}^{\infty} c_{i} \Psi_{s}(.-i) \tag{3.3}
\end{equation*}
$$

for some constants $\left(c_{i}\right)$. Moreover there is a constant K such that for any f in U_{s} and any integer j,

$$
\begin{equation*}
\left|c_{i}\right| \leqslant K\|f \mid[j, j+1]\|_{\infty}, \quad i=j-r-1, \ldots, j \tag{3.4}
\end{equation*}
$$

Proof. Consider the following interpolation problem. Find g in $\zeta_{4 r-1, r}\left(\frac{1}{2} Z\right)[0,1]$ with prescribed values for

$$
\begin{cases}g^{(j)}(0), & j=0, \ldots, 3 r-1, \tag{3.5}\\ g^{(j)}(1), & j=0, \ldots, r-1,2 r, \ldots, 3 r-1\end{cases}
$$

This is a problem of quasi-Hermite interpolation by Hermite splines and it follows from standard theory [10] that it has a unique solution for all choices of data. Thus for $0 \leqslant s \leqslant r-1$, the space $U_{s} \mid[0,1]$ has dimension $r+2$. But by (2.18) the functions $\Phi_{s, i}, i=0, \ldots, r+1$, lie in $U_{s} \mid[0,1]$ and, by Lemma 3.2, they form a basis for $U_{s} \mid[0,1]$. Now by (2.17),

$$
\Phi_{s, i}(t)=\Psi_{s}(t+i), \quad 0 \leqslant t \leqslant 1, i=0, \ldots, r+1,
$$

and thus for f in U_{s} we can write uniquely

$$
\begin{equation*}
f(x)=\sum_{i=0}^{r+1} c_{i} \Psi_{s}(x+i), \quad 0 \leqslant x \leqslant 1 \tag{3.6}
\end{equation*}
$$

Considering again the interpolation problem (3.5), we see that the space

$$
\zeta_{s}:=\left\{g \in U_{s} \mid[0,1]: g^{(j)}(0)=0, j=r, \ldots, 2 r-1,2 r+s\right\}
$$

has dimension 1. But by (2.20), $\Phi_{s, 0}$ lies in ζ_{s} and so forms a basis for ζ_{s}. Now let

$$
\begin{equation*}
f_{1}(x):=f(x)-\sum_{i=0}^{r+1} c_{i} \Psi_{s}(x+i), \quad x \in \mathbf{R} \tag{3.7}
\end{equation*}
$$

By (3.6), f_{1} vanishes on $[0,1]$ and so $f_{1}(.+1)$ lies in ζ_{s}. Thus there is a unique constant c_{-1} so that

$$
\begin{aligned}
f_{1}(x+1) & =c_{-1} \Phi_{s, 0}(x), & & 0 \leqslant x \leqslant 1 \\
& =c_{-1} \Psi_{s}(x), & & 0 \leqslant x \leqslant 1
\end{aligned}
$$

by (2.17). So by (3.7) we can write uniquely

$$
f(x)=\sum_{i=-1}^{r+1} c_{i} \Psi_{s}(x+i), \quad 0 \leqslant x \leqslant 2
$$

Continuing in this manner for increasing and decreasing x gives (3.3).
To prove (3.4) we take any integer j and note that $\Psi_{s}(.-i) \mid[j, j+1]$, $i=j-r-1, \ldots, j$, form a basis for $U_{s}[j, j+1]$. Since norms on a finite dimensional space are equivalent, there is a constant K such that for all f in U_{s},

$$
\max \left\{\left|c_{i}\right|: j-r-1 \leqslant i \leqslant j\right\} \leqslant K\|f \mid[j, j+1]\|_{\infty}
$$

Since K is clearly independent of j, this completes the proof.
Theorem 3.1. Any bounded function f in U can be written uniquely in the form

$$
f=\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} c_{i}^{(s)} \Psi_{s}(.-i)
$$

for uniformly bounded constants $c_{i}^{(s)}$. Moreover, if $f(x)$ decays exponentially as $|x| \rightarrow \infty$, then $c_{i}^{(s)}$ decays exponentially as $|i| \rightarrow \infty, s=0, \ldots, r-1$.

Proof. Consider again the cardinal Birkhoff interpolation problem (3.1). From the theory of [5] this problem is "solvable," i.e., for bounded date there is a unique bounded solution and if the data decays exponentially as $|j| \rightarrow \infty$, then the solution decays exponentially as $|x| \rightarrow \infty$.

It follows that we can write any bounded function f in U in the form $f=\sum_{s=0}^{r-1} g_{s}$, where for $s=0, \ldots, r-1, g_{s}$ is bounded and lies in U_{s}. Moreover, if $f(x)$ decays exponentially as $|x| \rightarrow \infty$, then for $s=0, \ldots, r-1$, $g_{s}(x)$ decays exponentially as $|x| \rightarrow \infty$.

The result now follows from Lemma 3.3.
So far in this section we have derived properties of the functions $\Psi_{0}, \ldots, \Psi_{r-1}$. We shall now deduce properties of the wavelets $\psi_{s}=\Psi_{s}^{(2 r)}$, $s=0, \ldots, r-1$. Recall that ψ_{s} lies in $W \cap T_{s}$ and has support in $[0, r+2]$.

Theorem 3.2. Take $0 \leqslant s \leqslant r-1$. Any element of $W \cap T_{s}$ with support in $[0, r+2]$ is a constant multiple of ψ_{s}. The function ψ_{s} does not have support on any interval $[a, b]$ strictly in $[0, r+2]$ and for any integer j, $0 \leqslant j \leqslant r+1, \psi_{s}$ does not vanish identically on $[j, j+1]$. Moreover ψ_{s} is either symmetric or anti-symmetric about $r / 2+1$.

Proof. Suppose that g is an element of $W \cap T_{s}$ with support in $[0, r+2]$. Then by Lemma 2.1, there is a function f in U_{s} with support
in $[0, r+2]$ satisfying $f^{(2 r)}=g$. By Lemma 3.3, f can be expressed in the form (3.3). Applying Lemma 3.2 on the interval $[-1,0]$ gives $c_{i}=0$, $-r-2 \leqslant i \leqslant-1$. Similarly applying it on $[r+2, r+3]$ gives $c_{i}=0$, $1 \leqslant i \leqslant r+2$. Thus the restriction of f to $[0, r+2]$ equals $c_{0} \Psi_{s}$ and since f has support on $[0, r+2]$, we have $f=c_{0} \Psi_{s}$. Hence $g=c_{0} \psi_{s}$.

If ψ_{s} has support on an interval $[a, b]$ strictly in $[0, r+2]$, then by Lemma 2.1, Ψ_{s} also has support on $[a, b]$ which contradicts Corollary 3.1.

Next suppose that ψ_{s} vanishes identically on $[j, j+1]$ for some integer $j, 0 \leqslant j \leqslant r+1$. Then we can write $\psi_{s}=F+G$, where F has support in $[0, j]$ and G has support in $[j+1, r+2]$. By the previous part of the result, ψ_{s} cannot vanish identically on $[0,1]$ and so F cannot vanish identically. Clearly F is in T_{s}. We claim that F lies in W. For $i \geqslant j$ and $k=0, \ldots, r-1$, $B_{k}(.-i)$ vanishes on $[0, j]$ and so $\int F B_{k}(.-i)=0$. Next consider $i \leqslant j-1$. Then for $k=0, \ldots, r-1, \quad B_{k}(.-i)$ vanishes on $[j+1, r+2]$ and so $\int G B_{k}(.-i)=0$. Since ψ_{s} is in $W, \int(F+G) B_{k}(.-i)=0$ and so we again have $\int F B_{k}(.-i)=0$. Since $\left\{B_{k}(.-i): i \in Z, k=0, \ldots, r-1\right\}$ forms a basis for V_{0}, F is orthogonal to V_{0}, i.e. F lies in W. So F is an element of $W \cap T_{s}$ with support in $[0, j]$, which contradicts the two earlier parts of the result.

Finally, we note that $\psi_{s}\left(r+2-\right.$.) is an element of $W \cap T_{s}$ with support in $[0, r+2]$ and so $\psi_{s}(r+2-)=.c \psi_{s}$, where $\psi_{s}=c^{2} \psi_{s}$ and so $c= \pm 1$.

We say a sequence $\left(f_{i}\right)_{-\infty}^{\infty}$ of functions is locally linearly independent on an interval (a, b) if whenever $\sum_{-\infty}^{\infty} c_{i} f_{i}$ vanishes identically on (a, b), then $c_{i}=0$ for all i for which f_{i} does not vanish identically on (a, b).

Theorem 3.3. For $0 \leqslant s \leqslant r-1$ and any integer j, the sequence $\left(\psi_{s}(.-i)\right)_{i=-\infty}^{\infty}$ is locally linearly independent on $(j, j+1)$.

Proof. Without loss of generality we may assume $j=0$. Suppose that $f=\sum_{-\infty}^{\infty} c_{i} \psi_{s}(.-i)$ vanishes identically on $(0,1)$. Let $g=\sum_{-r-1}^{0} c_{i} \psi_{s}(.-i)$. Then f coincides with g on $(0,1)$ and so g vanishes identically on $(0,1)$. Then $g=g_{1}+g_{2}$, where g_{1} has support in $[-r-1,0]$ and g_{2} has support in $[1, r+2]$. Clearly g_{1} and g_{2} are in T_{s}. By the same argument as in the last part of the proof of Theorem 3.2, g_{1} and g_{2} are in W. So by Theorem 3.2, g_{2} is a constant multiple of ψ_{s} and, as g_{2} vanishes on $[0,1]$, it must vanish identically. Similarly, g_{1} vanishes identically and hence g vanishes identically.

On $[r+1, r+2], g$ coincides with $c_{0} \psi_{s}$ and so $c_{0}=0$. Continuing in this way gives $c_{-1}=\cdots=c_{-r-1}=0$. Thus the sequence $\left(\psi_{s}(.-i)\right)_{i=-\infty}^{\infty}$ is locally linearly independent on $(0,1)$.

Remark. The sequence $\left(\psi_{s}(.-i)\right)_{i=-\infty}^{\infty}$ is not locally linearly independent on $\left(0, \frac{1}{2}\right)$. To see this we note that $W \cap T_{s} \left\lvert\,\left(0, \frac{1}{2}\right)\right.$ lies in the space

$$
P:=\left\{p \in \pi_{2 r-1} \left\lvert\,\left(0, \frac{1}{2}\right)\right.: p^{(j)}(0)=0,0 \leqslant j \leqslant r-1, j \neq s\right\}
$$

where $\pi_{2 r-1}$ denotes polynomials of degree $2 r-1$. It is easily seen that $\operatorname{dim} P=r+1$. However the $r+2$ functions $\left\{\psi_{s}(.-i):-r-1 \leqslant i \leqslant 0\right\}$ all have supports overlapping ($0, \frac{1}{2}$) and their restrictions to ($0, \frac{1}{2}$) must be linearly dependent.

Theorem 3.4. Any function f in V_{1} can be written uniquely in the form

$$
\begin{equation*}
f=\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} b_{i}^{(s)} B_{s}(.-i)+\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} c_{i}^{(s)} \psi_{s}(.-i) \tag{3.8}
\end{equation*}
$$

for sequences $\left(b_{i}^{(s)}\right)_{i=-\infty}^{\infty}$ and $\left(c_{i}^{(s)}\right)_{i=-\infty}^{\infty}$ in l^{2}. Moreover if $f(x)$ decays exponentially as $|x| \rightarrow \infty$, then $b_{i}^{(s)}$ and $c_{i}^{(s)}$ decay exponentially as $|i| \rightarrow \infty$.

Proof. First suppose that f has support on $[a, b]$. Let F be the function in $\zeta_{4 r-1, r}\left(\frac{1}{2} Z\right)$ which vanishes on $(-\infty, a)$ and satisfies $F^{(2 r)}=f$. Then F coincides on (b, ∞) with a polynomial p of degree $2 r-1$. By Schoenberg's theory [13] there is a unique element S of $\zeta_{4 r-1, r}(Z)$ which interpolates F with multiplicity r on Z. Since $F-S$ is in $\zeta_{4 r-1, r}\left(\frac{1}{2} Z\right)$ and has zeros of multiplicity r on Z, we have $F=S+\Psi$ form some Ψ in U.

Since F vanishes on $(-\infty, a)$ Schoenberg's theory shows that $S(x)$ decays exponentially as $x \rightarrow-\infty$. Also $S-p$ interpolates $F-p$ with multiplicity r on Z and, since $F-p$ vanishes on $(b, \infty), S(x)-p(x)$ decays exponentially as $x \rightarrow \infty$. Writing S in terms of B-splines, we see that $S^{(2 r)}(x)$ decays exponentially as $x \rightarrow-\infty$ and, since $S^{(2 r)}(x)=$ $(S-p)^{(2 r)}(x)$, it also decays exponentially as $x \rightarrow \infty$. Thus we can write

$$
\begin{equation*}
S^{(2 r)}=\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} b_{i}^{(s)} B_{s}(.-i), \tag{3.9}
\end{equation*}
$$

where $b_{i}^{(s)}$ decays exponentially as $|i| \rightarrow \infty$.
Now $\Psi=F-S$ which equals $-S$ on $(-\infty, a)$ and equals $p-S$ on (b, ∞). Thus $\Psi(x)$ decays exponentially as $|x| \rightarrow \infty$. Applying Theorem 3.1 and differentiating $2 r$ times then gives

$$
\begin{equation*}
\Psi^{(2 r)}=\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} c_{i}^{(s)} \psi_{s}(.-i) \tag{3.10}
\end{equation*}
$$

where $c_{i}^{(s)}$ decays exponentially as $i \rightarrow \infty$. Adding (3.9) and (3.10) gives (3.8).

In particular, we can write for $j=0, \ldots, r-1, k \in Z$,

$$
\begin{align*}
B_{j}(2 x-k)= & \sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} b_{2 i-k, j}^{(s)} B_{s}(x-i) \\
& +\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} c_{2 i-k, j}^{(s)} \psi_{s}(x-i), \quad x \in \mathbf{R} \tag{3.11}
\end{align*}
$$

where for some $K>0,0<\lambda<1$,

$$
\begin{equation*}
\left|b_{i, j}^{(s)}\right| \leqslant K \lambda^{|i|}, \quad\left|c_{i, j}^{(s)}\right| \leqslant K \lambda^{|i|}, \quad s=0, \ldots, r-1, i \in Z \tag{3.12}
\end{equation*}
$$

Now any function f in V_{1} can be written

$$
\begin{equation*}
f(x)=\sum_{j=0}^{r-1} \sum_{k=-\infty}^{\infty} a_{k}^{(j)} B_{j}(2 x-k), \quad x \in \mathbf{R}, \tag{3.13}
\end{equation*}
$$

where for $j=0, \ldots, r-1, a_{j}=\left(a_{k}^{(j)}\right)_{k=-\infty}^{\infty}$ lies in l^{2} with

$$
\begin{equation*}
\left\|a_{j}\right\|_{2} \leqslant C\|f\|_{2} \tag{3.14}
\end{equation*}
$$

for some constant C. Then (3.11) and (3.13) give (3.8), where

$$
\begin{align*}
b_{i}^{(s)} & =\sum_{j=0}^{r-1} \sum_{k=-\infty}^{\infty} a_{k}^{(j)} b_{2 i-k, j}^{(s)}, \tag{3.15}\\
c_{i}^{(s)} & =\sum_{j=0}^{r-1} \sum_{k=-\infty}^{\infty} a_{k}^{(j)} c_{2 i-k, j}^{(s)} . \tag{3.16}
\end{align*}
$$

It follows easily from (3.12), (3.14), (3.15), and (3.16) that for $s=0, \ldots, r-1$, the sequences $b_{s}:=\left(b_{i}^{(s)}\right)_{i=-\infty}^{\infty}$ and $c_{s}:=\left(c_{i}^{(s)}\right)_{i=-\infty}^{\infty}$ are in l^{2} and

$$
\begin{equation*}
\left\|b_{s}\right\|_{2} \leqslant A\|f\|_{2}, \quad\left\|c_{s}\right\|_{2} \leqslant A\|f\|_{2} \tag{3.17}
\end{equation*}
$$

for some constant A. If $f(x)$ decays exponentially as $|x| \rightarrow \infty$, then for $j=0, \ldots, r-1$, we see from (3.13) that $a_{k}^{(j)}$ decays exponentially as $|k| \rightarrow \infty$ and again it follows from (3.12), (3.15), and (3.16) that $b_{i}^{(s)}$ and $c_{i}^{(s)}$ decay exponentially as $|i| \rightarrow \infty$.

Corollary 3.2. The functions $\left\{\psi_{s}(.-i): i \in Z, s=0, \ldots, r-1\right\}$ form a Riesz basis for W.

Proof. Take f in W. Then by Theorem 3.4 we can write

$$
\begin{equation*}
f=\sum_{s=0}^{r-1} \sum_{i=-\infty}^{\infty} c_{i}^{(s)} \psi_{s}(\cdot-i) \tag{3.18}
\end{equation*}
$$

for a sequence $c_{s}:=\left(c_{i}^{(s)}\right)_{i=-\infty}^{\infty}$ in l^{2}. Clearly $\|f\|_{2} \leqslant C \sum_{s=0}^{r-1}\left\|c_{s}\right\|_{2}$ for some constant C. Moreover, by (3.17) we have $\sum_{s=0}^{r-1}\left\|c_{s}\right\|_{2} \leqslant B\|f\|_{2}$ for some constant B, which completes the proof.

Corollary 3.3. For $s=0, \ldots, r-1$, the functions $\left\{\psi_{s}(.-i): i \in Z\right\}$ form a Riesz basis for $W \cap T_{s}$.

Proof. Take f in $W \cap T_{s}$. By Theorem 3.4 we can express f as in (3.18). Take $0 \leqslant j \leqslant r-1, j \neq s$. Then for $k \in Z$, we have

$$
0=f^{(j)}(k)=\sum_{i=k-r-1}^{k-1} c_{i}^{(j)} \psi_{j}^{(j)}(k-i)
$$

and so

$$
\begin{equation*}
\sum_{i=1}^{r+1} c_{k-i}^{(j)} \psi_{j}^{(j)}(i)=0, \quad k \in Z \tag{3.19}
\end{equation*}
$$

If we had $\psi_{j}^{(j)}(i)=0, i=1, \ldots, r+1$, then Ψ_{j} would satisfy the zero interpolation conditions for the solvable problem (3.1), which contradicts Ψ_{j} having compact support. Thus the sequence $c_{j}:=\left(c_{i}^{(j)}\right)_{i=-\infty}^{\infty}$ satisfies the non-trivial recurrence relation (3.19) and, since c_{j} is in l^{2}, we must have $c_{i}^{(j)}=0, i \in Z$.

Since this holds for all j with $0 \leqslant j \leqslant r-1, j \neq s$, (3.18) becomes

$$
f=\sum_{i=-\infty}^{\infty} c_{i}^{(s)} \psi_{s}(.-i) .
$$

It follows from Corollary 3.2 that $\left\{\psi_{s}(-i): i \in Z\right\}$ forms a Riesz basis for $W \cap T_{s}$.

4. An Example

We now consider the simplest case $r=2$ and express the functions ψ_{0} and ψ_{1} (up to normalisation) in terms of the wavelets f_{1} and g_{1} of Theorem 5.1 of [7]. For completeness we first give the construction of f_{1} and g_{1}.

Let N_{0}^{7} be the usual B-spline of degree 7 with double knots at $0, \ldots, 3$ and a singe knot at 4 . Let N_{1}^{7} be the corresponding B-spline with a single knot at 0 and double knots at $1, \ldots, 4$, so that $N_{1}^{7}(x)=N_{0}^{7}(4-x)$. The remaining B-splines N_{i}^{7}, for integers i, are given by $N_{i+2}^{7}(x)=N_{i}^{7}(x-1)$. We define a function F by

$$
\begin{align*}
F_{i, 0}(x) & =N_{i}^{7}(2 x)+N_{5-i}^{7}(2 x), \quad i=0,1,2, \\
F_{i, 1}(x) & =F_{i, 0}(x) F_{i+1,0}(1)-F_{i+1,0}(x) F_{i, 0}(1), \quad i=0,1, \tag{4.1}\\
F(x) & =F_{0,1}(x) F_{1,1}^{\prime}(1)-F_{1,1}(x) F_{0,1}^{\prime}(1) . \tag{4.2}
\end{align*}
$$

A function G is defined by

$$
G_{i, 0}(x)=N_{i}^{7}(2 x)-N_{5-i}^{7}(2 x), \quad i=0,1,2,
$$

and (4.1), (4.2) with F replaced throughout by G. We now define

$$
f_{1}=F^{(4)}, \quad g_{1}=G^{(4)}
$$

Then f_{1} and g_{1} lie in W with support on $[0,3]$ and are, respectively, even and odd about $\frac{3}{2}$.

Theorem 4.1. The functions $\tilde{\psi}_{0}, \tilde{\psi}_{1}$ defined by

$$
\begin{align*}
& \tilde{\psi}_{0}(x)=g_{1}^{\prime}(1)\left(f_{1}(x)+f_{1}(x-1)\right)-f_{1}^{\prime}(1)\left(g_{1}(x)-g_{1}(x-1)\right) \tag{4.3}\\
& \tilde{\psi}_{1}(x)=g_{1}(1)\left(f_{1}(x)-f_{1}(x-1)\right)-f_{1}(1)\left(g_{1}(x)+g_{1}(x-1)\right) \tag{4.4}
\end{align*}
$$

are non-zero constant multiples of ψ_{0}, ψ_{1}, respectively.
Proof. Since $\tilde{\psi}_{0}, \tilde{\psi}_{1}$ lie in W with support in [0,4], it is sufficient to show that they do not vanish identically and

$$
\begin{equation*}
\tilde{\psi}_{0}^{\prime}(k)=\tilde{\psi}_{1}(k)=0, \quad k=1,2,3 . \tag{4.5}
\end{equation*}
$$

By the symmetry properties of f_{1} and g_{1} we see that $\tilde{\psi}_{0}$ and $\tilde{\psi}_{1}$ are, respectively, symmetric and anti-symmetric about 2 . So (4.5) is satisfied for $k=2$. From (4.3) and (4.4) we see that (4.5) is satisfies for $k=1$, and so by symmetry it is also satisfied for $k=3$.

Now if $f_{1}^{\prime}(1)=0$, then f_{1} lies in $W \cap T_{0}$ and has support on [0,3], which contradicts Theorem 3.2. Now it follows from Theorems 4.2 and 5.1 of [7] that $f_{1}, f_{1}(.-1), g_{1}, g_{1}(.-1)$ are linearly independent. Since $f_{1}^{\prime}(1) \neq 0$, we see from (4.3) that $\tilde{\psi}_{0}$ does not vanish identically. Similarly we can show $f_{1}(1) \neq 0$ and deduce from (4.4) that $\tilde{\psi}_{1}$ does not vanish identically.

References

1. G. Battle, A block spin construction of ondelettes, Part 1: Lemarie functions, Comm. Math. Phys. 110 (1987), 601-615.
2. C. K. Chus, "An Introduction to Wavelets," Academic Press, San Diego, 1992.
3. C. K. Chui and J. Z. Wang, A general framework for compactly supported splines and wavelets, J. Approx. Theory, to appear.
4. I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990), 961-10005.
5. T. N. T. Goodman and S. L. Lee, The Budan-Fourier theorem and Hermite-Birkhoff spline interpolation, Trans. Amer. Math. Soc. 271 (1982), 451-467.
6. T. N. T. Goodman, S. L. Lee, and W. S. Tang, Wavelets in wandering subspaces, Trans. Amer. Math. Soc. 338 (1993), 639-654.
7. T. N. T. Goodman and S. L. Lee, "Wavelets of Multiplicity r," Report AA/921, University of Dundee, 1992.
8. R.-Q. Jia and C. A. Micchelli, Using the refinement equation for the construction of prewavelets II: Powers of two, in "Curves and Surfaces" (P. J. Laurent, A. Le Méhauté, and L. L. Schumaker, Eds.), pp. 209-246, Academic Press, New York, 1991.
9. S. L. Lee, B-splines for cardinal Hermite interpolation, Linear Algebra Appl. 12 (1975), 269-280.
10. G. G. Lorentz, K. Jetter, and S. D. Riemenschneider, "Birkhoff Interpolation," Addison-Wesley, Reading, MA, 1983.
11. S. G. Mallat, Multiresolution approximations and wavelet orthonormal bases of $L^{2}(\mathbf{R})$, Trans. Amer. Math. Soc. 315 (1989), 69-87.
12. Y. Meyer, "Ondelettes et Opérateurs I: Ondelettes," Hermann, Paris, 1990.
13. I. J. Schoenberg, "Cardinal Spline Interpolation," Regional Conference Series in Applied Mathematics, SIAM, Philadelphia, 1973.
14. I. J. Schoenberg and A. Sharma, Cardinal interpolation and spline functions. V. The B-splines for cardinal Hermite interpolation, Linear Algebra Appl. 7 (1973), 1-42.
