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Wavelets are constructed comprising spline functions with multiple knots. These
wavelets have certain derivatives vanishing at the integers, in an analogous manner
to the B-splines of Schoenberg and Sharma related to cardinal Hermite inter­
polation. ([;, 1994 Academic Press, Inc.

1. INTRODUCTION

We do not attempt to give here a review of the development of the
theory of wavelets, but refer to [2,4, 11, 12]. Although the theory extends
to more than one dimension, we restrict our attention here to the
univariate case.

Let l/J be a function in L 2(R) and consider its translated dilates
B:= {2 k

/
2l/J(2 k

- j):j, k E Z}. We call1/J an orthogonal wavelet if B forms an
orthonormal basis for L 2(R). We caIl l/J a wavelet (sometimes called
prewavelet) if B forms a Riesz basis for L2(R) and l/J(2 k

• - j) is orthogonal
to l/J(2'.-i) whenever ki=!. (A set {¢J/jEZ} in L 2(R) is a Riesz basis for
L \R) if every function f in L 2(R) can be expressed uniquely in the form
1:~ 00 cj¢Jj and the norm Ilfll := 11c112 is equivalent to the norm IlfI12)' The
weaker notion of wavelet was considered more recently than that of
orthogonal wavelet, see [1,8], and is particularly useful in allowing the
construction of compactly supported spline wavelets [3].

In [6, 7], this concept is weakened further, as follows. We say functions
l/Jo, ..., l/J r_I are wavelets of multiplicity r if B:= {2 kI2 l/J ,(2k

• - j):j, k EZ,
S = 0, ..., r -l} forms a Riesz basis for L 2(R) and l/J ,(2k

• - j) is orthogonal
to l/J ,(2 k

• - i) whenever k # I. In [7], this idea is used to construct com­
pactly supported spline wavelets l/Jo, ..., l/Jr-I with knots of multiplicity r,
which are analogous to consecutive B-splines with knots of multiplicity r.

In this paper we give a different construction of spline wavelets
l/Jo, ..., l/Jr-1 with knots of multiplicity r, which are analogous to the
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B-splines introduced by Schoenberg and Sharma [14], which are related to
the problem of cardinal Hermite spline interpolation. Here each wavelet
t/! S' 0:::; s:::; r - 1, satisfies the interpolation conditions

O:::;j:::;r-l,jl:s, keZ.

Thus data values on the derivatives of order s at the integers are picked up
only by integer translates of the wavelet t/!s' and not by integer translates
of the wavelets I/Ij, j I: s.

The construction of the wavelets 1/10' ..., 1/1r-I is given in Section 2 and
their properties are studied in Section 3. The work here depends heavily on
the work of Lee [9] in showing that the B-splines are locally linearly inde­
pendent, and on the theory of cardinal BirkhotT interpolation in [5].
Finally, in Section 4, we examine the special case of cubic splines with
double knots, and in this case relate the wavelets of this paper with those
of [7].

2. CONSTRUCTION OF WAVELETS

We denote by 'n, r(S) the space of spline functions of degree n on R with
knots of multiplicity r on the set S. For i = 0, ..., r - 1, we let N; denote the
B-spline in '2r-I, r(Z) with support on [0,2] and knots at 0, 1, and 2 of
multiplicity r - i, r, and i + 1, respectively, (with suitable normalisation).
Then any function f in C2r- I, r(Z) can be written uniquely in the form

co r-l

f= L: L aijNj (. - i)
;=-~ j=O

for numbers (aij)'
Instead of this usual basis of B-splines for (2r -I, r(Z), we shall consider

an alternative basis introduced by Schoenberg and Sharma [14] and
shown to be a basis by Lee in [9]. For s = 0, ..., r - 1, we let Bs denote the
unique element of '2r-1, r(Z) with support on [0,2] and satisfying

j= 0, ..., r-1. (2.1 )

Now Bo, ...,Br_ 1 form a basis for (2r-l,r(Z) 1 [0,2] and hence
No, ... ,Nr _ 1 can be written as linear combinations of Bo, ...,Br _ l , It
follows that any function f in '2r-I, r(Z) with support in [k, k +N] for k
in Z and N ~ 2 can be written in the form

640(78(2-2

k+N-2 r-I

f = L: L: aijBj (. - n,
i=k j=O

(2.2)
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where by (2.1),
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In particular, we see that since (2r_I.AZ)C(2r_I.A!Z), we have

where

2 r-I

Bs(x) = L L cijBj (2x-i),
i=O j=O

s = 0, ..., r-1, (2.3 )

. (.) (i + 1)c··=2-JBJ --
'J s 2'

We remark that the basis (Bj ) is defined for degree 2m - 1 for any m ~ r,
but it is only for degree n = 2r - 1 that we are able to express any function
in (n. r(Z) of compact support as a finite linear combination as in (2.2).

Now let VO =(2r_l.r(Z)nL2(R), VI =(2r_I.A!Z)nL2(R) and let Wbe
the orthogonal complement of Vo in VI' It is known [7] that {Nj (. - i):
iEZ, j=O, ..., r-l} forms a Riesz basis for Vo. Since No, ..., N r_ 1 and
Bo' ..., Br _ 1 are equivalent bases, it follows that {Bj (. - i): i E Z,
j = 0, ..., r - 1} is also a Riesz basis for Vo. The two-scale relation (2.3)
suggests that we look for wavelets t/J s corresponding to the B-splines B.. as
we now describe.

For s = 0, ..., r - I define

For even rand s = 0, ..., r - 1, we shall construct a function t/J sin W n Ts

with support on [0,r+2] so that {t/J.(.-i): ieZ, s=O, ...,r-l} forms a
Riesz basis for W It then follows from the work of [6] that t/J0, ..., t/J r _ 1

are wavelets of multiplicity r, as defined in Section 1. To do this we
consider, for s = 0, ..., r - 1, the space

Us = {IE (4r-l. rOZ) :fU ) I Z = 0,°~j ~ r -1, 2r ~j ~ 3r -1,j # 2r + s}.

We also define

U= {Ie(4r-l.rOZ) :fU) I Z=O,j=O, ..., r-l}.

By integrating by parts it is easy to see that we have

LEMMA 2.1. Iff in W n Ts has support in [a, b], a < b, then there is a
unique function g in Us with support in [a, b] and g(2r) =f Conversely if g
in Us has support in [a, b], then g(2r) is in W n Ts.
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We shall construct functions 'Ps in Us> s=O, ..., r-l, and then define
t/J s = 'P~2r).

Consider the function

2r-l 4r-1 4r-1
S(x)= L: ajx

j
+ L: ajx

j
+ L: bj(x-!)j+,

3r 3r

and for). in R consider the equations

O~x~l, (2.4)

{
S(j)(I)=O,j=O, ..., r-l,

S(j)(l) - ),S(j)(O) = 0,
j=2r, , 3r-l,

j = r, , 2r - 1.
(2.5)

This gives a homogeneous system of 3r equations in the unknowns
an ..., a2r -1' a3n ... , a4r _ 1, b3n ... , b4r _ l' We denote the determinant of this
system by 1t().).

Now take s, 0 ~ s ~ r - 1. For S as in (2.4), consider the function

x 2r + s

T(x) = S(x) + c (2 )"r+s.
O~x~1. (2.6)

For). in Rand 0 ~ t ~ 1, we consider the equations

TU)(l)=O, j=O, ..., r-l, 2r, ..., 2r+s-l,

T(2r+s)(I) - ).T(2r+s)(0) = 0,

T(j)(1)=O, j=2r+s+ 1, , 3r-l,

T(j)(I) - ).TU)(O) =0, j= r, , 2r-l,

T(t) =0.

(2.7)

(2.8)

(2.9)

(2.10)

(2.11 )

This gives a homogeneous system of 3r + 1 equations in the 3r previous
unknowns together with the unknown c. We denote its determinant by
1tA)., t) = 1ts(t). Since T(2r+s)(0) = c, we have

For example, when r = 1,

(2.12)

1 1
o 6

1to()., t) = 1 _). 3

1
if

3

Considering (2.11), (2.7), and (2.9) gives, for general r,

o~j~ r-l, 2r ~j ~ 3r - l,j# 2r + s, (2.13)
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while (2.11), (2.8), and (2.10) give

n~j)(l) = t1.n~j)(O), j = r, ..., 2r - 1 and 2r + s. (2.14)

From (2.13) and (2.14) we see that nAt) can be extended to an element
ns of Us satisfying

ns(t + 1) = t1.nAt),

We now write

r + 1

ns(t1., t)= L cPs.k(tpr+l-k,
k=O

and define

tER.

°~ t ~ 1,

(2.15 )

(2.16 )

:= 0, otherwise.

'Ps(t) := cPs. k(t - k), k ~ t < k + 1, k =0, ..., r + 1,
(2.17)

k= 0, ..., r+ 1, °~j~ r-l, 2r ~j~ 3r-l,j# 2r + s,

cP~:~(l) = cP~:L 1(0), k = 0, ..., r,j = r, ... , 2r - 1 and 2r + s, (2.19)

cPU)o(O) = cPU) + 1(1) = 0, j = r, ..., 2r - 1 and 2r + s. (2.20)s, s, r

Equating coefficients of powers of t1. in (2.13) and (2.14) gives

cPU) (0) = cPU) (1) = 0,
s. k s. k

(2.18 )

From (2.17}-(2.20) we see that 'Ps lies in Us' Clearly from (2.17), 'Ps has
support in [0, r + 2]. So by Lemma 2.1, the function t/J s= 'P;2r) is in
W" Ts and has support in [0, r + 2].

To finish this section we note that by (2.15}-(2.17),

00

nAt) = L 'Ps(t + kpr+ 1-\ t E R,

while by (2.12),

00

= L 'PAt-kpr+I+k,
k= -00

r+1

n(t1.) = L 'Pyr+s)(k) t1.r+I-k

k=1

tER, (2.21 )

r

= L 'P;2r+s)(r + 1- k) t1.k.
k=O

(2.22 )
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3. PROPERTIES OF WAVELETS
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We now study properties of the functions "'0, ...,"',-1, in particular
showing that {'"S(, - i): i e Z, s = 0, ..., r - I} forms a Riesz basis for Wand
hence "'0' ...,"',-I are wavelets of multiplicity r. As in the previous section,
we shall first consider the functions 'Po, ..., 'P,_I which, by (2.17), is
equivalent to studying the functions {ct> s, d given by (2.16). Henceforward
we assume that r is even.

LEMMA 3.1. For O~s~r-l and any real number A, the junction
ns = ns(A, .) does not vanish identically on R.

Proof We shall apply the theory of [5]. Since n(A) is the determinant
of the system (2.5), the roots of n(A) = 0 are the eigenvalues for the
following cardinal BirkhotT interpolation problem.

Find a functionjin '4'-1, r(!Z) with prescribed values fOr} (3.1)
j(j)(k), keZ,)eI,

where 1= {O, ..., r-l, 2r, ..., 3r-l}. We shall apply a special case of
Theorem 4.6 of [5], which we now state. For a problem of form (3.1),
let J={r~)~4r-l :4r-l-)¢I}. Suppose that J={jr, ...,),}, where
)1 < '" <)n and for some P,11,

{
odd
even

if 1~k ~ P,

if P + 1~k~r.

Then (3.1) has p distinct eigenvalues of sign ( -1)~ and r - p distinct eigen­
values of sign ( - 1)~ + I.

For the case above we have J = {2r, ..., 3r - I} and, since r is even, there
are r distinct, strictly positive eigenvalues. Moreover, by symmetry, the
eigenvalues are invariant under t -+ t -I and so they are not equal to 1.

Now the values of A for which n~')(O) = n~r)(A, 0) = 0 are the eigenvalues
for the cardinal Birkhoff interpolation problem (3.1) with 1= {O, ..., r,
2r, ..., 3r - I} \ {2r + s}.

In this case J = {2r - 1 - s, 2r, ..., 3r - 2} and as above we see that if s is
even, then the r eigenvalues are distinct, strictly negative and not equal to
-1, while if s is odd, the eigenvalues comprise 1 and r - 1 distinct strictly
negative eigenvalues, including - 1.

So if ). ~ 0 or A= 1, then from (2.12),

n~2r+s)(0) = n(A) #- 0,

while if A> 0, A#- 1, then n~r)(o) #- O. So for all real )., ns does not vanish
identically. I
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A similar argument shows that Lemma 3.1 is true for r odd and seven.
Unfortunately, however, it does not hold when both rand s are odd, for
in this case n) -1, .) vanishes identically. For rand s odd, arguing as in
the proof of Lemma 3.1 shows that for ,1,= -1, n;2r+ S)(O) = n;r)(o) = 0 and
considering a finite BirkhotT interpolation problem on any large enough
interval shows that ns must vanish on this interval.

LEMMA 3.2. For 0:::; s:::; r - 1, the functions f/J s, j, i = 0, ..., r + 1, are
linearly independent on [0, !J and on [1, 1].

Proof This follows closely the proof of Lemma 1 in [9]. Suppose that

r+1

L ajf/Js, j(x) = 0,
j~O

for some constants (a j ). By (2.20) we have

r

'" a.f/J(j)(l)=O~ I S,I ,

j~O

j = r, ... , 2r - 1 and 2r + s.

This gives r + 1 equations in r + 1 unknowns. Let A denote the determinant
of this system:

A := det[ f/J;~~ (1)].

We shall show that A # O. It follows that ao= ... = ar = O. Since
f/Js. r+ I(t) = n.(O, t), this does not vanish identically, by Lemma 3.1, and so
we also have ar+ 1 =0. This shows that f/Js.o, ..., f/Js,r+1 are linearly inde­
pendent on [1, 1] and the result for [0, D follows similarly.

Now let AI, ..., Ar be the roots of n(A) = 0, which we showed in the proof
of Lemma 3.1 are distinct and strictly positive. Letting Ao be any non-zero
value distinct from AI, ... , A" put

V:=det[Ar+l-j]r. o·
J '.J ~

Then

AV= det [~ f/J(j) (l) Ar + I-k]l...J s, k I

k~O

= det[n;j)(A j, 1)],

by (2.16) and (2.20). By (2.15) and (2.12),
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Since 1t(A.;) =0, ; = 1, ..., r, we have

LlV=(-I)' A.o1t(A.o)det[1t~j)(A.;,1)]~~1 ;:-,.1.

Since A.o1t(A.oh~O, we only need to show that

det[S/i)(1 )J~= 1 j~~ 1;>6 0,

where we have written

181

(3.2)

For ; = 1, ..., T, S; does not vanish identically, by Lemma 3.1, and by
(2.15 ),

S;(t+l)=A.;S;(t), tER.

Moreover by (2.12) and (2.13),

kEZ,j=O, ..., r-l, 2r, ..., 3r-1.

In the terminology of [13, 5J, Sl' ..., Sr are eigensplines for the problem
(3.1). Now suppose that

and let

r

I c;S;U)(I)=O,
;=1

j=r, ...,2r-l,

S(x) = 0, x ~ 1,

r

= L c;S;(x), x ~ 1.
;=1

Then S lies in (4r-l.A!Z) and

S(j)(k) =0, kEZ, ;=0, ..., r-l, 2r, ..., 3r-1.

So from the theory of [5], S is a linear combination of the eigensplines.
Since the eigensplines are linearly independent on (- 00,0), we must have
S=O and hence L:~=I c;S;=O on (1, 00). Since the eigensplines are linearly
independent on (1,00) we must have c;=O, ;= 1, ..., r. Thus (3.2) is
established and the proof is complete. I

Lemma 3.2 tells us, in particular, that none of the functions
r1>s,o, ..., r1>s.r+1 can vanish identically on [0, n or on n, 1] and so defini­
tion (2.17) immediately gives
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COROLLARY 3.1. For °~ s ~ r - 1, the function 'Ps does not vanish identi­
cally on any nontrivial interval in [0, r + 2].

LEMMA 3.3. For °~ s ~ r - 1, any function f in Us can be written
uniquely in the form

00

f= L ci'Ps(·-i)
i= -00

(3.3 )

for some constants (cJ Moreover there is a constant K such that for any f
in Us and any integer j,

i = j - r - 1, ...,j. (3.4 )

Proof Consider the following interpolation problem. Find g in
(4r _ I. r(! 2)[0, 1J with prescribed values for

j=o, , 3r-l,

j=O, , r-l, 2r, ..., 3r-1.
(3.5)

This is a problem of quasi-Hermite interpolation by Hermite splines and
it follows from standard theory [lOJ that it has a unique solution for all
choices of data. Thus for °~ s ~ r - 1, the space Us I [0, 1] has dimension
r + 2. But by (2.18) the functions t:P s. i' i = 0, ..., r + 1, lie in Us I [0, 1J and,
by Lemma 3.2, they form a basis for Us I [0, 1]. Now by (2.17),

t:Ps.i(t) = 'P,(t+i), °~ t ~ 1, i = 0, ..., r + 1,

and thus for f in Us we can write uniquely

r+1

f(x) = L cj'P,(x+i),
i=O

(3.6)

Considering again the interpolation problem (3.5), we see that the space

C:= {gE Us 1[0,1] :g(J)(O)=O,j=r, ..., 2r-l, 2r+s}

has dimension 1. But by (2.20), t:Ps,o lies in C and so forms a basis for C.
Now let

r+ I

fl(x) :=f(x)- L ci'P.(x+i),
i=O

xER. (3.7)

By (3.6)'/1 vanishes on [0, 1J and so fl(. + 1) lies in C. Thus there is a
unique constant c _I so that

fl(x+ 1)=c 1 t:Ps.o(x),

= c _I 'Ps(x),

o~x~ 1,

O~x~ 1,
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by (2.17). So by (3.7) we can write uniquely
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,+1

f(x) = L cj'Ps(x + i),
i=~l

0~x~2.

Continuing in this manner for increasing and decreasing x gives (3.3).
To prove (3.4) we take any integer j and note that 'Ps(' - i) I [j, j + 1J,

i = j - r - 1, ...,j, form a basis for Us[),j + 1]. Since norms on a finite
dimensional space are equivalent, there is a constant K such that for all f
in US'

max{lcd:j-r-1 ~i~j} ~Kllfl [j,j+ 1Jlloo'

Since K is clearly independent of j, this completes the proof. I

THEOREM 3.1. Any boundedfunctionfin U can be written uniquely in the
form

r-l 00

f = L L cjS)'P.(. - i),
5=0 i=-oo

for uniformly bounded constants cjs). Moreover, iff(x) decays exponentially
as Ixl -+ 00, then cjS) decays exponentially as Iii -+ 00, s = 0, ..., r - 1.

Proof Consider again the cardinal Birkhoff interpolation problem
(3.1). From the theory of [5] this problem is "solvable," i.e., for bounded
date there is a unique bounded solution and if the data decays exponen­
tially as iii -+ 00, then the solution decays exponentially as Ixl -+ 00.

It follows that we can write any bounded function f in U in the form
f=r.;:~gS' where for s=0, ...,r-1,gs is bounded and lies in Us'
Moreover, if f(x) decays exponentially as Ixl -+ 00, then for s =0, ..., r -1,
gs(x) decays exponentially as Ixl-+ 00.

The result now follows from Lemma 3.3. I
So far in this section we have derived properties of the functions

'Po, ..., 'P, _ I' We shall now deduce properties of the wavelets r/!s = 'P?r),
s = 0, ..., r - 1. Recall that '" s lies in W n Ts and has support in [0, r + 2].

THEOREM 3.2. Take 0 ~ s ~ r - 1. Any element of W n T J• with support in
[0, r + 2J is a constant multiple ofr/! S' The function", s does not have support
on any interval [a, b] strictly in [0, r + 2] and for any integer j,
O:::;j:::; r + 1, '"s does not vanish identically on [j,j + I]. Moreover'" s is
either symmetric or anti-symmetric about r/2 + 1.

Proof Suppose that g is an element of W n T s with support in
[0, r + 2]. Then by Lemma 2.1, there is a function f in Us with support
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in [0, r + 2] satisfying 1(2r) = g. By Lemma 3.3, I can be expressed in the
form (3.3). Applying Lemma 3.2 on the interval [-1,0] gives Ci = 0,
- r - 2:::;; i:::;; -1. Similarly applying it on [r + 2, r + 3] gives Ci = 0,
1:::;; i:::;; r + 2. Thus the restriction of I to [0, r + 2] equals Co 'Ps and since I
has support on [0, r+2], we have/=co'Ps · Hence g=cot/ts'

If t/t s has support on an interval [a, b] strictly in [0, r + 2], then by
Lemma 2.1, 'Ps also has support on [a, b] which contradicts Corollary 3.1.

Next suppose that t/t s vanishes identically on [j,) + 1] for some integer
), 0:::;;):::;; r + 1. Then we can write t/t s= F + G, where F has support in [0,)]
and G has support in [j + 1, r + 2]. By the previous part of the result, t/t s
cannot vanish identically on [0, 1] and so F cannot vanish identically.
Clearly F is in Ts • We claim that F lies in W. For i ~) and k = 0, ..., r - 1,
Bk (. - i) vanishes on [0,)] and so JFBk (. - i) = 0. Next consider i:::;;) - 1.
Then for k = 0, ..., r - 1, Bk (. - i) vanishes on [j + 1, r + 2] and so
JGBk (· - i) = 0. Since t/J s is in W, J(F + G) Bk (. - i) = °and so we again
have JFBk (· - i) = 0. Since {Bk (. - i): i E Z, k = 0, ..., r - 1} forms a basis
for Vo, F is orthogonal to Vo, i.e. F lies in W. So F is an element of W ('\ Ts
with support in [0,)], which contradicts the two earlier parts of the result.

Finally, we note that t/t s(r + 2 - .) is an element of W ('\ Ts with support
in [0, r + 2] and so t/t,(r + 2 - .) = ct/J s> where t/J s= c2t/t s and so c = ± 1. I

We say a sequence (f;) OC) 00 of functions is locally linearly independent on
an interval (a, b) if whenever L OC) 00 cJ; vanishes identically on (a, b), then
c; = °for all i for which /; does not vanish identically on (a, b).

THEOREM 3.3. For 0:::;; s:::;; r - 1 and any integer ), the sequence
(t/J ,(. - i» '(: _ 00 is locally linearly independent on (j,) + 1).

Proof Without loss of generality we may assume) = 0. Suppose that
1= L. OC) 00 cit/J,(· - i) vanishes identically on (0, 1). Let g = L~r-l cit/ts(' - i).
Then I coincides with g on (0, 1) and so g vanishes identically on (0, 1).
Then g = gl + g2' where gl has support in [ -r -1,0] and g2 has support
in [1, r + 2]. Clearly gland g2 are in Ts . By the same argument as in the
last part of the proof of Theorem 3.2, gland g2 are in W. So by
Theorem 3.2, g2 is a constant multiple of t/J s and, as g2 vanishes on [0, 1],
it must vanish identically. Similarly, g 1 vanishes identically and hence g
vanishes identically.

On [r + 1, r + 2], g coincides with cot/J s and so Co = 0. Continuing in this
way gives Cl='" =c_r_1=0. Thus the sequence (t/ts(.-i»)'(:_oo is
locally linearly independent on (0, 1). I

Remark. The sequence (t/Js(.-i»'(:_oo is not locally linearly inde­
pendent on (0, !). To see this we note that W ('\ Ts I (0, !) lies in the space

P:= {pE 1t2r-l I (0, !): pU)(O) = 0, °:::;;)~ r -l,)#s},
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where 7l: 2r - 1 denotes polynomials of degree 2r - 1. It is easily seen that
dimP=r+1. However the r+2 functions {l/Js(.-i): -r-1:::;:;i:::;:;0} all
have supports overlapping (0, !) and their restrictions to (0, !) must be
linearly dependent.

THEOREM 3.4. Any function f in V1 can be written uniquely in the form

r-1

f= L,
00 r-l

L b~S)BA·-i)+ L:
00

L c~s)l/JA· - i), (3.8)
s=O i=-oo s=O i=-oo

for sequences (bls»,': -00 and (c~s»,': -CT0 in 12. Moreover if f(x) decays
exponentially as Ixl ~ 00, then b~s) and c~s) decay exponentially as Iii ~ 00.

Proof First suppose thatfhas support on [a, b]. Let F be the function
in '4r_l,r(!Z) which vanishes on (-oo,a) and satisfies F(2r)=f Then F
coincides on (b, 00) with a polynomial p of degree 2r - 1. By Schoenberg's
theory [13] there is a unique element S of '4r-1, r(Z) which interpolates F
with multiplicity r on Z. Since F-S is in '4r-I.A!Z) and has zeros of
multiplicity r on Z, we have F = S + 'P form some 'P in U.

Since F vanishes on (- 00, a) Schoenberg's theory shows that S(x)
decays exponentially as x ~ - 00. Also S - p interpolates F - p with
multiplicity r on Z and. since F-p vanishes on (b. 00). S(x)-p(x)
decays exponentially as x ~ 00. Writing S in terms of B-splines. we see
that S(2r)(x) decays exponentially as x -+ - 00 and, since S(2r)(x) =
(S - p)(2r) (x). it also decays exponentially as x -+ 00. Thus we can write

r-1 00

s(2r)= L: L: bjs)Bs(.-i).
5=0;=-00

(3.9)

where b~s) decays exponentially as Iii -+ 00.

Now 'P = F - S which equals - S on (- 00, a) and equals p - S on
(b, 00). Thus 'P(x) decays exponentially as Ix! -+ 00. Applying Theorem 3.1
and differentiating 2r times then gives

r-1 00

'P(2r) = L L c~s)l/J'(. - i).
5=0 i=-oo

(3.10)

where c~s) decays exponentially as i -+ 00. Adding (3.9) and (3.10) gives
(3.8).

In particular, we can write for j = O..... r - 1, k E Z.

r-I
Bj(2x-k)= L:

00

L b~~)_k.jBAx - i)
5=0/=-00

r-1 00

+L: L c~~)~k.jl/JAx-i),
s=O;=-oo

xER. (3.11)
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where for some K> 0, 0< A< 1,

s = 0, ..., r - 1, i E Z. (3.12 )

Now any function f in VI can be written

r-l 00

f(x)= L L al!)Bj (2x-k),
j~Ok~-:o

xER, (3.13 )

where for j =0, ..., r - 1, aj = (al!»)f~ -:0 lies in {z with

for some constant C. Then (3.11) and (3.13) give (3.8), where

r-l oX;

bls) =" " a(j)b(s) .
I L. L. k ZI-k,J'

j~Ok=-:o

r - L :c,

C(s) -" " a(J)c(s)
i - L. L. k Zi-k.J'

j~O k=-:o

(3.14 )

(3.15 )

(3.16 )

It follows easily from (3.12), (3.14), (3.15), and (3.16) that for
s = 0, "., r - 1, the sequences h,. := (bl S »);: -:0 and cs := (cl S »);: -:0 are in {z
and

Ilbsllz~A Ilfllz, Ilcsllz~A Ilfllz, (3.17 )

for some constant A. If f(x) decays exponentially as Ixl-+ 00, then for
j = 0, "., r - 1, we see from (3.13) that all) decays exponentially as Ikl -+ 00

and again it follows from (3.12), (3.15), and (3.16) that blS
) and c~s) decay

exponentially as Iii -+ 00. I

COROLLARY 3.2. The functions {t/J s(. - i): i E Z, S = 0, "', r - I} form a
Riesz basis for W.

Proof Take f in W. Then by Theorem 3.4 we can write

r-l 00

f = L L: cls)t/Js(· - i),
s=O i=-oo

(3.18 )

for a sequence Cs := (c~s));: -:0 in {z. Clearly Ilfllz ~ C L;:bII csIIz for some
constant C. Moreover, by (3.17) we have L;:bllcsllz~Bllfllz for some
constant B, which completes the proof. I

COROLLARY 3.3, For s = 0, .", r - 1, the functions {t/J s(, - i): i E Z} form
a Riesz basis for W () Ts •
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Proof Take I in W n Ts • By Theorem 3.4 we can express I as in (3.18).
Take O~j~r-l, j#s. Then for keZ, we have

k-l

o=1(jJ(k) = L cVJljJyJ(k-i),
i=k-r-l

and so

r+ I

I cj!~jljJYJ(i) = 0,
j=1

keZ. (3.19)

If we had ljJY)(i) =0, i = 1, ..., r + 1, then 'Pj would satisfy the zero inter­
polation conditions for the solvable problem (3.1), which contradicts 'Pj

having compact support. Thus the sequence cj := (cV)~ -00 satisfies the
non-trivial recurrence relation (3.19) and, since cj is in /2, we must have
cF> =0, ie Z.

Since this holds for all j with 0 ~j ~ r - 1, j # s, (3.18) becomes

00

1= L c~s)ljJ.(. - i).
;= -00

It follows from Corollary 3.2 that {ljJ.(. - i): i E Z} forms a Riesz basis for
Wn Ts • I

4. AN EXAMPLE

We now consider the simplest case r = 2 and express the functions ljJo
and ljJ I (up to normalisation) in terms of the wavelets II and g I of
Theorem 5.1 of [7]. For completeness we first give the construction ofII
and gl'

Let NJ be the usual B-spline of degree 7 with double knots at 0, ..:, 3 and
a singe knot at 4. Let Ni be the corresponding B-spline with a single knot
at 0 and double knots at 1, ..., 4, so that Ni(x) = NJ(4 - x). The remaining
B-splines N?, for integers i, are given by N?+ 2(X) = N?(x - 1). We define a
function F by

F j.o(x) = Nj(2x) +NLj(2x), i = 0, 1,2,

F i• I(X) = F j.o(x) F j+ l. 0(1) - F i + l. o(x) F i, 0(1),

F(x) = Fo,l(x) F;.I(I) - F I , I(X) F~. 1(1).

A function G is defined by

i=O,I, (4.1 )

(4.2)

i=O, 1,2,
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and (4.1), (4.2) with F replaced throughout by G. We now define

Then fl and gl lie in W with support on [0,3] and are, respectively,
even and odd about ~.

THEOREM 4.1. The functions 1;0' I;I defined by

I;o(x) = g'l(l )(fI(X) +fl(x - 1)) - f:(l )(gl(x) - gl(x - 1)), (4.3)

I; I(X) = gl(1 )(fI(X) - fl(x - 1)) - fl (1 )(gl(x) +gl (x - 1), (4.4)

are non-zero constant multiples of t/J 0' t/J I' respectively.

Proof Since 1;0' 1;1 lie in W with support in [0,4], it is sufficient to
show that they do not vanish identically and

k=1,2,3. (4.5)

By the symmetry properties of fl and g I we see that 1;0 and I; I are,
respectively, symmetric and anti-symmetric about 2. So (4.5) is satisfied for
k = 2. From (4.3) and (4.4) we see that (4.5) is satisfies for k = 1, and so
by symmetry it is also satisfied for k = 3.

Now if f:( 1) = 0, then fl lies in W n To and has support on [0, 3], which
contradicts Theorem 3.2. Now it follows from Theorems 4.2 and 5.1 of [7]
that fl> fl (. - 1), g 1> g I (. - 1) are linearly independent. Since f~ (1) # 0, we
see from (4.3) that 1;0 does not vanish identically. Similarly we can show
fl (1) # °and deduce from (4.4) that I; I does not vanish identically. I
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